

Multi sensor arrays for insitu electromagnetic imaging of parts during metal PBF-LB AM processing

WAMS conference, Orlando, Feb. 2024

Schweizerische Eidgenossenschaft Confédération suisse

Confédération suisse Confederazione Svizzera Confederaziun svizra

Innosuisse – Schweizerische Agentur für Innovationsförderung

Bernard Revaz, CEO Jonatan Wicht, CTO Yannick Bianchi, Data Scientist Alain Berthoud, Mech. Eng.

Feb. 21, 2024

info@amiquam.ch AMiquam SA 2, route Cité Ouest CH-1196 Gland, Switzerland <u>www.amiquam.ch</u> in <u>https://www.linkedin.com/company/amiquam</u>

Mob. +41 77 401 17 48

Metal AM: postprocessing

Problem:

- 1. Post processing: significant costs, delays
- 2. QC and inspection: 30-50% costs
- 3. Time and cost for qualification and optimisation

Major hurdle for the growth of metal AM business

Solution:

Strengthen the in-situ monitoring tools Provide subsurface information Integrate NDT tools in the process

LPBF offers opportunities:

Part is open and available for tests Recoater -> scanner

Eddy currents for NDT/QC

- Normalised technique (ASNT, ISO15548, ASTM E1004-17, ASTM 3166:20, BS EN)
- Technique of choice for surface breaking crack detection in metallic components
- Useful for other applications (material properties, sub surface defects, etc...)
- Local, Simple surface preparation, no couplant

State of the art

In process material inspection (incl. process control)

Inspection of aviation AI plates ASTME 1004-02, MIL STD1537C, EN2004-1 and AMS 2772F

Detection of discontinuities

Crack detection in power blades

ASTM standard for NDE of metal AM aerospace parts E3166-20: Eddy Currents

	41	BLE 3 Aj	oplication	of NDT to [Detect Ad	ditive Man	e Manufacturing Discontinuity Classes ^A					
		Co	vered in this	Guide					Not Co	overed in this	s Guide	
Discontinuity Class	CT/RT/ CR/DR	ET	MET ^B	PCRT	PT	IRT	UT	AE	LT	NR	MT	V
Surface	XC	XD	х	_	XD	-	-	-	-		-	X
Porosity	X	XD	-	X	XD	-	х	-	-	-	-	X
Cracking	XE	XD	-	X	XD	x	х	X	XF	-	x	X
Lack of Fusion	XE	XD	-	X	XD	X	х	X	-	-	X	-
Part Dimensions	х	-	х	-		-	-	-	-	XH	-	
Density'	XJ	-	-	X	_	_	_	-	_	_	_	-
Inclusions	XK	XD	-	X	-	X	х	-	-	-	-	_
Discoloration	-	-	-	-	-	-	-	-	-	-	_	X
Residual Stress	-	$X^{D,L}$	x	X		-	-	-	-	x	-	-
Hermetic Sealing	-	_	-	-	-	-	-	-	XF	-	-	_

^A Abbreviations used: _ = not applicable, AE = Acoustic Emission, CR = Computed Radiography, CT = Computed Tomography, DR = Digital Radiology, ET = Eddy Current Testing, IRT = Infrared Thermography, LT = Leak Testing, MET = Metrology, MT = Magnetic Particle Testing, NR = Neutron Radiography, PCRT = Process Compensated Resonance Testing, PT = Penetrant Testing, RT = Radiographic Testing, UT = Ultrasonic Testing, and VT = Visual Testing.

^B Includes Digital Imaging.

^C Especially helpful when characterizing internal passageways or cavities (complex geometry parts) for underfill and overfill, or other internal features not accessible to MET, PT, or VT (including borescopy).

^D Applicable if on surface.

^E Radiographic methods are not optimal for detecting tight laminar features like cracking and LOF, which typically do not exhibit enough density change.

F If large enough to cause a leak or pressure drop across the part.

G Macroscopic cracks only.

^H Conventional neutron radiography (NR) allows determination of internal and external dimensions.

Pycnometry (Archimedes principle).

^J Density variations will only show up in imaged regions having equivalent thickness.

K If inclusions are large enough and sufficient scattering contrast exists.

^L Residual stress can be assessed if resulting from surface post-processing (for example, peening)

Excerpt from the Standard

"8.1 *Scope*

8.1.1 This section describes eddy current examination procedures commonly used in industry for quality
assessment of metallic materials. These procedures are applicable to additively manufactured parts during fabrication, immediately after fabrication, after post-processing and machining, and for in-service inspection and monitoring.

8.1.2 Eddy current methods are generally most sensitive to the material surface that is proximate to the sensor.

However, by selecting appropriate instrument operating parameters, the condition of both surface and near subsurface flaws can be detected. These procedures are capable of detecting surface breaking and nearby subsurface discontinuities such as cracks, porosity, voids, and inclusions as long as the flaw, discontinuity, or material condition has different electrical properties than the base material."

AMiquam Product roadmap From AMiquam W1 to a CaaS platform

AMiquam W1

Process monitoring providing unique information on material properties

Full-volume 3D NDT enabling part certification

2024

CaaS

Digital marketplace enabling certified inspectors to certify parts remotely

2025

2021

W1: A machine agnostic solution for LPBF Integrable in most LPBF machines available

Our solution can already be applied to 75% of the LPBF market and can be integrated in most of the machines on the market

Existing concepts for other Metal AM techniques (e beam, WAAM, DED, etc..)

Applied in pilot projects in Aerospace, Medtech, Energy, Manufacturing Industry

W1 in DMP350 machines

Acquisition to visualization chain

AMiquam Monitoring

Physical and statistical data ready for integration in QC documentation

Integration of AMiquam W1 in EOS machines

Front = H2

Acquisition and Calibration

AMiquam Monitoring OK/NOK for each layer Based on features selection OPC-UA server based

AMiquam Inspect Post-processing inspection Features tagging Thresholds settings

W2: full build plate inspection

Fabrication example

General Build Job Details

- Material: 316L
- Machine: Aconity Midi+
- EC array: 64 coils
- Coverage: 240mm
- Sensor pitch: 3.75mm (y resolution)
- Data acquisition rate 92Hz, 1pt/0.6mm (x resolution)

Parameters:

- 30µm layer thickness 1333 layers (40mm)
- Nominal parameter > 99.5% everywhere except where there are designed defects
- Dimension 150x38x40 (height) mm
- 100% of build plate fully inspected during fabrication with compliant NDT ET technique

Eddy current testing:

- 500µm lift-off at the start
- 200 kHz excitation frequency

Process and Seeded Artifacts

64 independent XZ planes 10 planes crossing the part

- The first 5 mm height from build plate no defects
- Porosity
 - Full slice
 - Slices with different process parameter inducing lack of fusion
- Localized discontinuities:
 - "Cracks"
 - Cylindrical/Spherical cavities
- Empty cuboids with thin walls
- Effect of the chessboard patterns (90° laser trajectories) and helicity of laser trajectory angles on the EC signals

In phase cross section plots

real part [V]

Out of phase cross section plots

/

)

)

Report

Defect	Parameter = scan speed [mm/s]	Observed (Yes/No)
Full porosity	1250	YES
"Random" porosity	1250	YES
	1000	YES
	1250	YES
	850	YES
	1100	YES
Long crack with angle	W = 1; H = 1.5	YES
	W = 1; H = 0.3	YES
	W = 0.8; H = 1.5	YES
	W = 0.8; H = 0.3	YES
	W = 0.5; H = 1.5	YES
	W = 0.5; H = 0.3	YES
Long crack 90°	W = 1; H = 1.5	YES
	W = 1; H = 0.75	YES
	W = 1; H = 0.3	YES
	W = 0.8; H = 1.5	YES
	W = 0.8; H = 0.75	YES
	W = 0.8; H = 0.3	YES
	W = 0.5; H = 1.5	YES
	W = 0.5; H = 0.75	YES
	W = 0.5; H = 0.3	YES
Empty Cylinders Coil 1	D = 1.5; H = 3	YES
	D = 1.5; H = 1.5	YES
	D = 1.5; H = 0.75	YES
	D = 1.5; H = 0.3	N.A.
	D = 1; H = 3	YES
	D = 1; H = 1.5	YES
	D = 1; H = 0.75	YES
	D = 1; H = 0.3	N.A.
Empty Cylinders Coil 1	D = 1.5; H = 3	YES
	D = 1.5; H = 1.5	YES
	D = 1.5; H = 0.75	YES
	D = 1.5; H = 0.3	N.A.
	D = 1; H = 3	YES
	D = 1; H = 1.5	YES
	D = 1; H = 0.75	YES
	D = 1; H = 0.3	N.A.
Thin Walls Coil 1	D = 0.8	YES
	D = 0.3	NO
Thin Walls Coil 2	D = 0.5	YES
	D = 0.2	NO

Defect	Parameter = scan speed [mm/s]	Observed (Yes/No)
Full porosity	1250	YES
"Random" porosity	1250	YES
	1000	YES
	1250	YES
	850	YES
	1100	YES

1250 1000 850 1100

Defect	Width (W) and Depth (H) [mm]	Observed (Yes/No)
Long crack with angle	W = 1; H = 1.5	YES
	W = 1; H = 0.3	YES
	W = 0.8; H = 1.5	YES
	W = 0.8; H = 0.3	YES
	W = 0.5; H = 1.5	YES
	W = 0.5; H = 0.3	YES

	-	100	

berd berd berd

LUI	'8	-	ucno	20	

Z : Height

Z : Height

Defect	Width (W) and Depth (H) [mm]	Observed (Yes/No
Long crack 90°	W = 1; H = 1.5	YES
	W = 1; H = 0.75	YES
	W = 1; H = 0.3	YES
	W = 0.8; H = 1.5	YES
	W = 0.8; H = 0.75	YES
	W = 0.8; H = 0.3	YES
	W = 0.5; H = 1.5	YES
	W = 0.5; H = 0.75	YES
	W = 0.5; H = 0.3	YES

X : Recoater motion

Defect	Diam. (D) and Depth (H) [mm]	Observed (Yes/No)
Empty Cylinders Coil 1	D = 1.5; H = 3	YES
	D = 1.5; H = 1.5	YES
	D = 1.5; H = 0.75	YES
	D = 1.5; H = 0.3	N.A.
	D = 1; H = 3	YES
	D = 1; H = 1.5	YES
	D = 1; H = 0.75	YES
	D = 1; H = 0.3	N.A.
Empty Cylinders Coil 1	D = 1.5; H = 3	YES
	D = 1.5; H = 1.5	YES
	D = 1.5; H = 0.75	YES
	D = 1.5; H = 0.3	N.A.
	D = 1; H = 3	YES
	D = 1; H = 1.5	YES
	D = 1; H = 0.75	YES
	D = 1; H = 0.3	N.A.

m Z : Height

X : Recoater motion

Signatures of cavities ("long cracks")

Signatures of cavities ("long cracks")

Signatures of cylinders (large)

Signatures of cylinders (medium)

In-situ powder check

Powder application

detect particles, powder bed inhomogeneities, and powder aging

Powder bed inspection

detect particles, powder bed inhomogeneities, and powder aging

Process monitoring

Process application

202.0

test machine health and process stability early warning for process deviation 0.1% porosity + 2um lift off sensitivity

Frequency heatmap (x-z plane)

Part monitoring application

monitor your production

Variations of the signals used to assess the regularity of the process

Integration of compliant sensors on the recoater of a Concept Laser M2 to directly monitor the quality of the parts during the powder recoating motion

Input parameters

- Position, reference value, acceptable deviation
- Possibly layer dependent
- Acceptable deviation determined by performing several fabrications and extracting a standard deviation

3DPrecision collaboration

AMiquam application

verify the presence of critical features in the part

Part application

verify the presence of critical features in the part

Inner structure application

cavities

Layer

In-situ metrology and part displacement

AMiquam application

in machine metrology <10um resolution

Early detection of cold cracking

Detection of small changes in part position due to cracking Unnoticed by the other machine monitoring tools (and without collision with recoater) the process continued

AMiquam application

detect part deformation (residual stress, cold cracking)

0.1% swelling of the part detected during fabricationLower density detected at the region where the crack occurs-> these are correlated with the crack presence

Thanks!

AMiquam SA 2, route Cité Ouest 1196 Gland, Switzerland